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The Digital Twin
for Engineering
Applications   
David Wagg, Department of Mechanical Engineering, University of Sheffield

W
e are living through an era of digital transition. Throughout the media,

and increasingly in the workplace, it’s common to hear discussion

related to “Industry 4.0”, “big data” and the “Internet-of-things”. These

are broad concepts that can often lack specific details of how they might

arise in practice, particularly for engineers. However, within this broader landscape,

the concept of a “digital twin” has emerged as a potentially transformative idea for

engineers engaged in modelling and simulation.
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A digital twin is a virtual duplicate of an engineering
system built from a combination of models and data.
Most importantly, it can be used as a predictive tool to
inform key engineering decisions. A good introduction to
the idea, including the background and history of the
topic, is given by Datta (2017).  

The motivation for the digital twin comes from the fact
that, in most engineering sectors we are becoming
increasingly reliant on computer simulations to help
make decisions about design and management of
engineering structures. There are numerous challenges
relating to this, not least how much trust can be given to
any specific simulation result. In many sectors, high-
performance computing (HPC) has been applied to try to
solve this problem, by building increasingly high-fidelity
models in the belief that this would remove uncertainty.
Using raw computing power can work in certain cases,
but there are a considerable number of engineering
problems that still have significant uncertainty associated
with simulations even with HPC. 

One example is the problem of mechanical joints. As
models have achieved higher fidelity, individual
components can be more accurately modelled. However,
for many systems this has just highlighted the issue of
uncertainty in modelling the joints between components
in complex structures. These types of effects are typically
strongly nonlinear, and localised. To make things even
more challenging, systems operating in dynamic
environments are highly sensitive to very small changes
in (or disturbances to) the structure. For example, small
differences in tolerances, joint properties (such as
friction), or the operating environment (temperature,
humidity), can all lead to large changes in operational
performance.

Another example is the fact that modern engineering
systems are typically highly complex, and as a result it is
common practice to have multiple teams of engineers
creating different models of components and subsystems
in parallel. These models often have different levels of
fidelity, assumptions about uncertainty, and different
inputs and outputs. A common scenario is that the sub-
system models cannot be unified into a model of the
complete system. In addition, there are typically multiple
sources (and formats) of data from existing systems,
users, control systems, or test results that could
potentially be included into the design or operation
process.

So what does this mean for engineering simulation? HPC
is very likely to continue to deliver performance
improvements, but the next transformative step for
simulation is to harness the power of data. Use of data
has been transforming many aspects of our daily lives,
most notably through the activities of companies like
Google and Facebook, who have access to large

quantities of data from consumers which they use to
target advertising and for other applications. Engineering
systems have been going through a related data
transition, as sensor technology has advanced. Many
systems now have the potential to gather huge amounts
of data. 

The main idea of the digital twin is to combine models
and data to create a virtual prediction tool. The obvious
question is: How do you combine models and data? There
is a long-established historical context. For example, in
applications relating to linear dynamics, modal testing
has been established as the method for validating
models (Ewins 2000, Au 2017). Using this approach,
vibration modes are used to connect the model to the
measured data. In essence the modal representation can
be related to both a physics-based model (typically a
finite element model representing the geometric and
material properties of the system) and an identification
method (or data-driven model). For other applications
there are also well-established methods for validating
simulation results, and in recent years there has been a
strong emphasis on extending all these methods to
include nonlinear systems (see for example Hill et al.
2014 and references therein).

A useful framework to use when considering how to
create a digital twin is to consider white, black and grey
box models (Worden & Tomlinson 2000). White-box
models are based on nearly perfect knowledge of the
physics, whereas black-box models are derived entirely
from measured data, with no assumed knowledge of the
physics at all. Grey-box models are a blend of the two,
with some knowledge of the physics and some reliance
on data - this is the format required for a digital twin. The
difference between the digital twin and a validated model,
comes primarily from the much more extensive use of
data (see as an example Tuegel et al 2011).

There have been previous developments in this area,
particularly finite element updating methods, where
model parameters are adjusted based on experimental
observations (Friswell & Mottershead, 1995). The digital
twin will also incorporate this functionality but will
typically be expected to be updated much more regularly,
ultimately in near real-time. The digital twin will also use
a whole range of data-based algorithms, to compare
each new data set with those in the database. Monitoring
the condition of the structure will be based on an evolving
history of information. Machine learning methods, will be
foremost among the algorithms used for this purpose
(Worden & Green 2014).

To create an interface between the data-driven methods
and the high-fidelity finite element models, the digital
twin will use a suite of intermediate representations
(similar to modes in modal analysis). These will include
reduced and/or low order models of the system or
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subsystems. It can also use numerical-experimental
hybrid testing to include test-bed data (Bursi & Wagg
2000). To manage all these interactions, at the core of the
digital twin will be a work-flow system, enabling all
required processes to be scheduled. Ultimately, machine
learning (and associated techniques from the field of
artificial intelligence) will enable the digital twin to
“learn” the work-flow process based on the information it
receives over time.

So, the digital twin is much more than just a validated
model. It will be a robustly-validated time-evolving
representation of the system, which starts during the
design phase, and continuing to evolve during
manufacture, commissioning, operation and finally
decommissioning. It is a virtual twin of the real system,
as it will continually reflect the changes that occur in the
structure. Just like weather forecast models, it will
continually update from the latest observations, and then
make predictions of the short-term future behavior to be
expected.

The final important issue is how to deal with uncertainty
within the digital twin (Grieves & Vickers, 2017). To inform
engineering decision makers, enabling trust in virtual
predictions is essential (Atkinson et al. 2011). To do this
the trust that can be associated with predictions from the
digital twin must be quantified, and for this it is essential
to integrate techniques from uncertainty quantification

and propagation. This quantification has to be applied to
all parts of the digital twin, data, models and processes
(as an early example see Li et al. 2017). Where required
these quantities should be propagated through the
model, to enable engineers to assess the level of
confidence they can have about the model predictions (Au
2014).

Of course, there will need to be a user interface to enable
interactions with the digital twin. Already there are
several software demonstrators that use a CAD, or
similar, representation of the system. Connectivity with
databases will clearly be important. Here we can see the
usefulness of the internet to link the twin with data and
other observations as close to real-time as possible. It is
likely that many of the methods in the digital twin will be
non-intrusive i.e. they will be developed as wrappers
without a requirement to modify existing source code or
software tools.

The digital twin is a relatively new idea, that has created
significant interest in many areas of industry. As
engineers are being required to design and manage ever
more complex engineering systems, the idea of having a
time-evolving digital twin is a highly attractive one.
However, there are substantial challenges to address in
order for this technology to reach full maturity, and so
deliver the potentially transformative developments into
the engineering community.

Figure 1:  The Concept of a digital twin
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